What You Need to Know Before
You Start

Starts 6 July 2025 07:05

Ends 6 July 2025

00 Days
00 Hours
00 Minutes
00 Seconds
course image

Artificial Intelligence Governance

Learn AI governance with Collibra. Build, embed, and scale responsible AI using tools, frameworks, and MLOps workflows.
via DataCamp

125 Courses


2 hours

Optional upgrade avallable

Intermediate

Progress at your own speed

Free Trial Available

Optional upgrade avallable

Overview

Learn AI governance with Collibra. Build, embed, and scale responsible AI using tools, frameworks, and MLOps workflows.

This course on AI Governance offers a guide to building responsible, scalable governance systems for AI. Featuring insights from experts at Collibra, you’ll learn how to align ethics, compliance, and business goals in real-world AI programs.

Start with the Why and Who You’ll begin by defining the scope of AI governance and aligning key stakeholders, from legal and risk to data science and business. Then, using tools like readiness assessments and maturity models, you'll learn how to set governance objectives that support both compliance needs and organizational strategy.

Make Governance Work Every Day Discover how to embed governance into your daily workflows through checklists, approval gates, and automated documentation. Learn to integrate governance into MLOps pipelines and tailor your approach using lightweight or heavyweight models depending on risk and scale.

Scale Smarter Stay Accountable Explore how to scale governance across teams and regions using federated models and governance platforms like Collibra’s. You’ll also learn to track governance KPIs, maintain traceability, and drive continuous improvement through monitoring and feedback loops.

Syllabus

  • Foundations of AI Governance
  • Explore what AI governance is, how it differs from ethics and risk management, and why it’s essential for responsible AI. Learn the key components of governance systems, roles and responsibilities across teams, and how to embed accountability and oversight throughout the AI lifecycle.
  • Regulations and Frameworks in Practice
  • Dive into global AI regulations, including the EU AI Act and U.S. Executive Order, and learn how to identify and manage high-risk systems. Explore key governance actions like conformity assessments, model documentation, and impact assessments, and understand how self-regulation and traceability build compliance, trust, and long-term accountability.
  • Implementing Governance in Organizations
  • Learn how to design, embed, and scale AI governance in real-world settings. This chapter covers stakeholder alignment, workflow integration via MLOps, lightweight vs. heavyweight governance models, automation for scalability, and KPI-based monitoring strategies to drive continuous improvement and accountability across your AI systems.

Taught by

Simla Sivanandan and Alexandre T'Kint


Subjects

Computer Science