Machine Learning courses

1331 Courses

Artificial Intelligence - Principles and Techniques - Autumn 2019

Discover the essentials of Artificial Intelligence with Stanford University's "Artificial Intelligence - Principles and Techniques" course offered in Autumn 2019. This course, available on YouTube, provides a comprehensive introduction to the principles and techniques of Artificial Intelligence (AI). Participants will explore critical areas of AI,.
course image
provider YouTube
pricing Free Online Course
duration 1 day 1 hour
sessions On-Demand

More and more products are now being developed using artificial intelligence. To avoid being left on the sidelines of progress, managers must understand how the robot’s “brains” work

Artificial intelligence (AI) and machine learning technologies have been used for many years, but now the intensity of their use has increased significantly. For example, machine learning is being actively implemented in telecommunications, retail, marketing and e-commerce. But many still do not fully understand what it is.

Machine learning involves the system processing a large number of examples, during which it identifies patterns and uses them to predict the characteristics of new data. In other words, this is the process of giving AI ml courses “consciousness”, the ability to remember and analyze.

Machine learning use cases

The use of machine learning has touched many areas in our lives. Let's look at the most striking examples of the use of computer intelligence:

Facial recognition in the subway will help identify violators or criminals in a huge mass of people. Ordinary observers cannot cope with this task. But a fast-learning machine will do this job without any problems.

What do you need for machine learning (ML)?

For those interested in training, there are several requirements to be met in order to be successful in this field. So, there are the main points you need to know about the machine learning course. These requirements include:

  1. Basic knowledge of programming languages such as Python, R, Java, JavaScript, etc.

  2. Average knowledge of statistics and probability.

  3. Basic knowledge of linear algebra in the ml course. In a linear regression model, a line is drawn through all the data points, and that line is used to calculate new values.

  4. Understanding Calculus.

  5. Knowledge of how to clean and structure raw data into the desired format to reduce the time required for decision making.

Machine learning courses from AI Eeducation are the best choice!